skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mason, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this paper, we present the results of a blind survey for compact sources in 243 Galaxy clusters that were identified using the thermal Sunyaev–Zel'dovich effect (tSZ). The survey was carried out at 90 GHz using MUSTANG2 on the Green Bank Telescope and achieved a 5σdetection limit of 1 mJy in the center of each cluster. We detected 24 discrete sources. The majority (18) of these correspond to known radio sources, and of these, five show signs of significant variability, either with time or in spectral index. The remaining sources have no clear counterparts at other wavelengths. Searches for galaxy clusters via the tSZ strongly rely on observations at 90 GHz, and the sources found have the potential to bias mass estimates of clusters. We compare our results to the Websky simulation that can be used to estimate the source contamination in galaxy cluster catalogs. While the simulation shows a good match to our observations at the clusters’ centers, it does not match our source distribution further out. Sources over 104″ from a cluster’s center bias the tSZ signal high, for some of the sources found, by over 50%. When averaged over the whole cluster population, the effect is smaller but still at a level of 1%–2%. We also discovered that unlike previous measurements and simulations, we see an enhancement of source counts in the outer regions of the clusters and fewer sources than expected in the centers of this tSZ-selected sample. 
    more » « less
  2. Abstract We present deep X-ray and radio observations of the fast blue optical transient (FBOT) AT 2020xnd/ZTF 20acigmel at z = 0.2433 from 13 days to 269 days after explosion. AT 2020xnd belongs to the category of optically luminous FBOTs with similarities to the archetypal event AT 2018cow. AT 2020xnd shows luminous radio emission reaching L ν ≈ 8 × 10 29 erg s −1 Hz −1 at 20 GHz and 75 days post-explosion, accompanied by luminous and rapidly fading soft X-ray emission peaking at L X ≈ 6 × 10 42 erg s −1 . Interpreting the radio emission in the context of synchrotron radiation from the explosion’s shock interaction with the environment, we find that AT 2020xnd launched a high-velocity outflow ( v ∼ 0.1 c –0.2 c ) propagating into a dense circumstellar medium (effective M ̇ ≈ 10 − 3 M ⊙ yr −1 for an assumed wind velocity of v w = 1000 km s −1 ). Similar to AT 2018cow, the detected X-ray emission is in excess compared to the extrapolated synchrotron spectrum and constitutes a different emission component, possibly powered by accretion onto a newly formed black hole or neutron star. These properties make AT 2020xnd a high-redshift analog to AT 2018cow, and establish AT 2020xnd as the fourth member of the class of optically luminous FBOTs with luminous multiwavelength counterparts. 
    more » « less
  3. ABSTRACT Compact sources can cause scatter in the scaling relationships between the amplitude of the thermal Sunyaev–Zel’dovich Effect (tSZE) in galaxy clusters and cluster mass. Estimates of the importance of this scatter vary – largely due to limited data on sources in clusters at the frequencies at which tSZE cluster surveys operate. In this paper, we present 90 GHz compact source measurements from a sample of 30 clusters observed using the MUSTANG2 instrument on the Green Bank Telescope. We present simulations of how a source’s flux density, spectral index, and angular separation from the cluster’s centre affect the measured tSZE in clusters detected by the Atacama Cosmology Telescope (ACT). By comparing the MUSTANG2 measurements with these simulations we calibrate an empirical relationship between 1.4 GHz flux densities from radio surveys and source contamination in ACT tSZE measurements. We find 3 per cent of the ACT clusters have more than a 20 per cent decrease in Compton-y but another 3 per cent have a 10 per cent increase in the Compton-y due to the matched filters used to find clusters. As sources affect the measured tSZE signal and hence the likelihood that a cluster will be detected, testing the level of source contamination in the tSZE signal using a tSZE-selected catalogue is inherently biased. We confirm this by comparing the ACT tSZE catalogue with optically and X-ray-selected cluster catalogues. There is a strong case for a large, high-resolution survey of clusters to better characterize their source population. 
    more » « less